Experimental data and ¹³C NMR chemical shifts calculation of the: α -amyrin, β -amyrin, α -amyrin acetate and β -amyrin acetate from natural sources

Fabio Luiz Paranhos Costa, ^{*1} Thais Forest Giacomello,¹ Rênica Alves de Morais Rocha,¹ Catharina E. Fingolo²

¹Regional Jataí, Universidade Federal de Goiás, GO, Brasil. BR 364, km 195, nº 3800 CEP 75801-615 – Jataí –GO ²Unidade Universitária de Farmácia Fundação Centro Universitário Estadual da Zona Oeste - UEZO, Av. Manuel Caldeira de Alvarenga, 1203. Campo Grande - Rio de Janeiro - RJ, 23070-200

flpcosta@ufg.br *

Abstract

The genus Dorstenia (Moraceae) is a large genus occurring in the tropics around the World that encompasses 170 herbaceous perennials species with succulent rhizomes. This genus is recognized as a rich source of prenyl and geranyl-substituted coumarins, chalcones, flavanones, flavones, flavonol and terpenoids. In this work, we present an application of a GIAO-HDFT universal scaling factor to predict the 30 ¹³C NMR chemical shifts of 4 triterpenes isolated from genus Dorstenia (Moraceae): α -amyrin (1), β -amyrin (2) α -amyrin acetate (3) β -amyrin acetate. Both the geometry optimizations and the vibrational frequencies were obtained using PM7 level of theory. Magnetics properties were obtained using GIAO-mPW1PW91/3-21G level of theory. For the 4 triterpenes root-mean-square errors were smaller than 2% after the application of the scale factor . In conclusion, GIAO-mPW1PW91/3-21G//PM7 linear regression obtained by using the experimental and the calculated data, is a very attractive tool as an alternative to more computationally demanding approaches, which are usually applied in order to achieve ¹³C NMR chemical shifts calculations.

Keywords: mPW1PW91/3-21G, PM7, GIAO-NMR, triterpenes