WREN 2017

The Workshop on Renewable Energy and Nanotechnology

ELECTRONIC TRANSPORT IN BIPHENYL MOLECULE JUNCTIONS WITH CARBYNE ELECTRODES

J. W. O. ARAUJO¹; M. M. MOREIRA¹; J. DEL NERO²

¹ Posgraduate in Electrical Engineering, Federal University of Para (UFPA), Belem, PA, Brazil.
² Department of Physics, Federal University of Para (UFPA), Belem, PA, Brazil.

ABSTRACT

Nanoscience has developed in the last decades. Theoretical studies on electronic transport modeling in organic semiconductor materials have provided important progress in nanotechnology [1]. Among these molecular electronic materials we highlight those formed by carbons composed of pi-conjugated molecules, the biphenyls, which are smaller structures comprising two adjacent benzenes and they are the ideal model compounds for investigating properties of electronic transport [2]. The device studied in this work is formed by a biphenyl molecule coupled to carbyne electrodes [1,3], according to the schematic representation of Figure 1. Carbyne is a monodimensional material consisting of a single filament formed by simple bonded carbon atoms and alternating triple bonds [3]. The electronic transport was calculated using the SIESTA/TRANSIESTA [4] computational package, through the combination of DFT (Density Functional Theory) and NEGF (Non-Equilibrium Greens Function) [5], which has been efficient in describing the electronic properties in molecular devices. The results show the behavior of the system when a polarization voltage is applied, the symmetry of the I-V curve and the differential conductance.

Figure 1- Schematic representation of the studied system.

REFERENCES

[1] TAO, N. J. Electron transport in molecular junctions. Nat. Nanotech. 1, 173, 2006;

[2] SWETA P; PANKAJ S; MANISHA P; SANDEEP K. *Electron transport in asymmetric biphenyl molecular junctions: effects of conformation and molecule-electrode distance.* The European Physical Journal B, 87-220, 2014;

[3] HEIMANN, R. B; EVSYUKOV, S.E. KAVAN, L. *Carbyne and Carbynoid Structures*. Springer Netherlands Edition 1, XVII, 446, 1999;

[4] SOLER, J. M.; ARTACHO, E.; GALE, J. D.; GARCÍA, A.; JUNQUERA, J.; ORDEJÓN, P.; SÁNCHEZ-PORTAL, D. *The SIESTA method for ab initio order-Nmaterials simulation*. Journal Physics Condense Matter, 14, 2745-2779, 2002;

[5] BRANDBYGE, M. Density-functional method for nonequilibrium electron transport. Physical Review B, 65, 165-401, 2002;